Vol. 4 No. 2 (2024): Journal of Machine Learning in Pharmaceutical Research
Articles

Deep Learning-based Drug Response Prediction for Personalized Medicine: Implementing deep learning models to predict individual patient responses to different drugs for personalized treatment planning

Dr. Gabriela Costa
Professor of Data Science, University of Porto, Portugal
Cover

Published 14-09-2024

Keywords

  • Deep Learning,
  • Drug Response Prediction

How to Cite

[1]
Dr. Gabriela Costa, “Deep Learning-based Drug Response Prediction for Personalized Medicine: Implementing deep learning models to predict individual patient responses to different drugs for personalized treatment planning”, Journal of Machine Learning in Pharmaceutical Research, vol. 4, no. 2, pp. 41–50, Sep. 2024, Accessed: Sep. 19, 2024. [Online]. Available: https://pharmapub.org/index.php/jmlpr/article/view/27

Abstract

Personalized medicine aims to tailor medical treatment to the individual characteristics of each patient. One of the key aspects of personalized medicine is predicting how a patient will respond to a particular drug. This paper explores the use of deep learning models for predicting individual patient responses to different drugs. We present a comprehensive review of the existing literature on drug response prediction and discuss the challenges and opportunities in this field. We then propose a novel deep learning approach for drug response prediction and evaluate its performance on a real-world dataset. Our results demonstrate that deep learning models can effectively predict individual drug responses, paving the way for personalized treatment planning in medicine.

Downloads

Download data is not yet available.

References

  1. Saeed, A., Zahoor, A., Husnain, A., & Gondal, R. M. (2024). Enhancing E-commerce furniture shopping with AR and AI-driven 3D modeling. International Journal of Science and Research Archive, 12(2), 040-046.
  2. Shahane, Vishal. "A Comprehensive Decision Framework for Modern IT Infrastructure: Integrating Virtualization, Containerization, and Serverless Computing to Optimize Resource Utilization and Performance." Australian Journal of Machine Learning Research & Applications 3.1 (2023): 53-75.
  3. Biswas, Anjanava, and Wrick Talukdar. "Guardrails for trust, safety, and ethical development and deployment of Large Language Models (LLM)." Journal of Science & Technology 4.6 (2023): 55-82.
  4. N. Pushadapu, “Machine Learning Models for Identifying Patterns in Radiology Imaging: AI-Driven Techniques and Real-World Applications”, Journal of Bioinformatics and Artificial Intelligence, vol. 4, no. 1, pp. 152–203, Apr. 2024
  5. Talukdar, Wrick, and Anjanava Biswas. "Improving Large Language Model (LLM) fidelity through context-aware grounding: A systematic approach to reliability and veracity." arXiv preprint arXiv:2408.04023 (2024).
  6. Chen, Jan-Jo, Ali Husnain, and Wei-Wei Cheng. "Exploring the Trade-Off Between Performance and Cost in Facial Recognition: Deep Learning Versus Traditional Computer Vision." Proceedings of SAI Intelligent Systems Conference. Cham: Springer Nature Switzerland, 2023.
  7. Alomari, Ghaith, et al. “AI-Driven Integrated Hardware and Software Solution for EEG-Based Detection of Depression and Anxiety.” International Journal for Multidisciplinary Research, vol. 6, no. 3, May 2024, pp. 1–24.
  8. Choi, J. E., Qiao, Y., Kryczek, I., Yu, J., Gurkan, J., Bao, Y., ... & Chinnaiyan, A. M. (2024). PIKfyve, expressed by CD11c-positive cells, controls tumor immunity. Nature Communications, 15(1), 5487.
  9. Borker, P., Bao, Y., Qiao, Y., Chinnaiyan, A., Choi, J. E., Zhang, Y., ... & Zou, W. (2024). Targeting the lipid kinase PIKfyve upregulates surface expression of MHC class I to augment cancer immunotherapy. Cancer Research, 84(6_Supplement), 7479-7479.
  10. Gondal, Mahnoor Naseer, and Safee Ullah Chaudhary. "Navigating multi-scale cancer systems biology towards model-driven clinical oncology and its applications in personalized therapeutics." Frontiers in Oncology 11 (2021): 712505.
  11. Saeed, Ayesha, et al. "A Comparative Study of Cat Swarm Algorithm for Graph Coloring Problem: Convergence Analysis and Performance Evaluation." International Journal of Innovative Research in Computer Science & Technology 12.4 (2024): 1-9.
  12. Pelluru, Karthik. "Enhancing Cyber Security: Strategies, Challenges, and Future Directions." Journal of Engineering and Technology 1.2 (2019): 1-11.
  13. Mustyala, Anirudh, and Sumanth Tatineni. "Cost Optimization Strategies for Kubernetes Deployments in Cloud Environments." ESP Journal of Engineering and Technology Advancements 1.1 (2021): 34-46.